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Abstract. Over recent years, machine learning (ML) methods have enabled considerable progress to be 

made within a variety of data-rich research domains. Genomics is one prominent field, with ML-based 

approaches achieving exciting results in a range of historically difficult tasks. One such area where ML 

approaches have achieved particular success is the classification of cancerous tissues using gene expression 

data. Despite this success, recent advances share a common issue with many other areas of ML research - 

state-of-the-art performance relies upon the aggregation of large training datasets. Many have raised concerns 

over the implications such large-scale data aggregation practice has for data privacy, and the nature of 

genomic data makes such concerns all the more pertinent within a cancer classification setting. Because of 

the sensitivity of such data, strict policies are enacted to protect patient privacy. Whilst currently unavoidable, 

such policies are a key roadblock to advances in ML research in this domain. Federated learning (FL) aims to 

solve this issue by allowing ML models to be trained on decentralized data. Despite the promise held by this 

approach, recent work has demonstrated that FL is not sufficient for fully private training of ML models. The 

incorporation of differential privacy (DP) into an FL framework has previously been shown to enable 

decentralized model training in a privacy-preserving manner. We introduce a method to incorporate custom 

differentially private algorithms directly into federated learning workflows that are not currently 

implemented by privacy libraries such as Opacus. 
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1. Introduction 

1.1. Context 

A surge in data availability across healthcare disciplines in recent years makes this domain an immensely 

exciting one for machine learning (ML) research, perhaps none more so than genomics. Rapid improvements 

in sequencing technologies have brought about a flood of large novel datasets, whose complexity often 

hampers progress by more traditional approaches. It is unsurprising then, that we have seen numerous 

successful applications of various ML approaches to classification tasks using gene expression datasets [1-6], 

such as the one used in the present study.  

Despite holding much promise, advances in this research domain typically require the aggregation of 

large amounts of genomic data, giving rise to significant privacy concerns. Additionally, hospitals often have 

strict privacy policies that prevent them from sharing their patient data even in encrypted form. These 

concerns form a significant roadblock to the adoption of ML in healthcare research despite the huge potential. 

Federated learning (FL) [7] was introduced to solve the privacy problem by allowing a global ML model 

to be learned from decentralized local data without the data ever leaving the device. To that end, many 

implementations of FL have been presented, PySyft [8] being one of the main libraries used in research 

settings. While this was a promising approach to protect privacy, the recent swathe of membership inference 

attacks [9] have shown that it is still possible for fully trained models to leak sensitive information about 
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individuals in the training dataset, therefore, questioning the adequacy of pure FL approaches in ensuring 

privacy. Still, FL is particularly useful in the medical context as it provides a way for hospitals to engage in 

collaborative learning without sharing their patient data directly. 

Differential Privacy[10], on the other hand, is a mathematical formalism that solves the privacy problem 

by providing strong guarantees bounding the information leakage due to the participation of a single user in a 

dataset. Differentially private (DP) mechanisms, therefore, enable ML to be conducted on sensitive datasets 

such as the present gene expression dataset without breaching the privacy of any single user. As such, DP 

provides an enhancement on top of the utility of FL by further providing strong mathematical guarantees that 

directly protect the privacy of the patient data during the learning process. Hence, federated learning put 

together with differential privacy can be a more efficient solution to enable secure ML in healthcare research 

compared to traditional approaches such as Fully Homomorphic Encryption which can be orders of 

magnitude slower [11] [12]. 

1.2. Problem Statement 

Whilst integrating between FL and DP is not an entirely new concept, current implementations suffer 

from significant disadvantages. Firstly, some of these implementations are bespoke [13][14] and have not 

been well-integrated and optimized for workflows involving open-source federated learning libraries such as 

PySyft. This, therefore, hinders the usage of such frameworks in research as the implementation code may 

not be published or be general enough for usage in various settings. Secondly, the implementations that do 

integrate with federated learning libraries such as Opacus [15], exclusively implement the DP-SGD 

algorithm hindering the usage of the framework with custom DP algorithms such as output perturbation [16] 

and approximate minima perturbation [17] which may prove to be more suitable in certain settings. 

Therefore, one of the biggest impediments to more FL-DP integration is the lack of a clear framework that is 

flexible enough to accommodate custom DP algorithms but also integrates well with and is well optimized 

for existing FL libraries. 

1.3. Contributions 

In this work, we present how custom DP algorithms can be implemented, specifically in the PySyft 

library. Furthermore, we optimize the implementation to make use of primitives in PySyft, namely the Plan 

architecture, and show how the optimization indeed brings down the communication cost significantly. 

Finally, we use this method to successfully train a binary cancer classifier in a decentralized, privacy-

preserving way. We show that our custom DP implementation results in a smaller accuracy drop from the 

non-private version compared to prior work done using the Opacus-PySyft integration [18] proving the 

utility of such a custom framework. Furthermore, as the custom DP algorithm we used can be swapped out 

for any other algorithm seamlessly, the framework is flexible and well optimized for the PySyft library; 

which we hope will prove useful to researchers for the development and testing of their custom DP 

algorithms in the FL context. To that end, we provide our full implementation at: 

(https://drive.google.com/file/d/17tH8zTjDrswFPGyL7HQA_XiEc9ljyWZc/view?usp=sharing) 

2. Preliminaries 

2.1. Differential Privacy 

Differential Privacy [10] provides strong mathematical guarantees protecting the users’ privacy. These 

guarantees are provided directly in Definition 1. Under this definition,   is the privacy parameter and   is 

the failure probability. 

Definition 1 (Differential Privacy [10]). A randomized algorithm   with domain     
 is      -

differentially private if for all    Range( ) and for all          such that           : 

Pr[  𝑥  𝑆]  𝑒𝜀Pr[  𝑦  𝑆] + 𝛿 

Differential privacy is a popular formalism due to the theorems that support it such as the Postprocessing 

theorem (Theorem 1) and Composition theorem (Theorem 2) which allow the results of differentially private 

mechanisms to be further used and combined without completely breaking the privacy guarantees. 
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Theorem 1 (Postprocessing Theorem [10]). Let          be a randomized algorithm that is 

     -differentially private. Let        be an arbitrary randomized mapping. Then          
   is      -differentially private. 

Theorem 2 (Basic Composition Theorem [10]). Let     
       and     

       be 

randomized algorithms that are        - and        -differentially private respectively. Then their 

combination defined to be       
          by the mapping                       is 

             -differentially private. 

2.2. Output Perturbation (OP) 

Output perturbation [16] was introduced as an extension from the sensitivity method [10] to the class of 

empirical risk minimization (ERM) classification problems. Although later methods such as the objective 

perturbation method used in the DP-SGD algorithm [19] have been shown to be theoretically and empirically 

superior, the DP-SGD algorithm has already been widely implemented in the Opacus library which provides 

easy integration with the PySyft library [20]. Since in this paper, we are looking at how custom DP 

algorithms can be integrated into a PySyft workflow, this algorithm was chosen for its simplicity and 

computational efficiency. The output perturbation algorithm which is given in Algorithm 1 is proven to be 

     -differentially private. However, one of the caveats of using output perturbation in real-world 

algorithms is that the privacy guarantees depend on the exact minima of the function to be found. This is not 

a realistic assumption as in real-world algorithms, minima are often approximated over large numbers of 

iterations and computers generally operate under finite precision arithmetic. In order to use output 

perturbation correctly, modifications are necessary as can be seen in Section 3.5. 

 

Federated learning, as mentioned previously, enables a global model to be learned from decentralized 

local data. While there are many system architectures that enable FL, a key primitive in FL architectures is 

the plan. First introduced in [21], plans significantly reduce the bandwidth usage of FL workflows. This is 

important as high bandwidth protocols lead to increased communication cost and power consumption which 

are significant costs in decentralized setups which usually consist of mobile devices instead of powerful 

servers. Plans mitigate the bandwidth usage of FL protocols by compressing potentially   messages for   

operations on remote inputs to a single message that represents all   operations - the inputs of which are 

referenced through pointers. They do so by serializing a sequence of tensor operations into a single message 

that can be sent to and executed by all parties. 

 

Fig. 1: System architecture for PySyft Pla 
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Specifically, in PySyft, the @sy.func2plan decorator attempts to transform a given python function 

containing torch operations into a plan. As illustrated in Figure 1, before sending the plan to a remote worker 

for execution, it has to be first built or executed on dummy input for the tensor operations to be tracked and 

recorded into the message. The built plan can then be sent to each party in a single message who can then 

execute the plan on their local data and return the result of the plan for aggregation, thus resulting in overall 

low bandwidth usage. 

One of the main issues with the way plans are implemented currently is that since tensor operations need 

to be traced, only operations that are ’hook’ed by the Pytorch library can be used. This means that operations 

such as if and while cannot be converted into plans resulting in a major deficiency in the way plans can be 

used. Furthermore, the probability distributions presented in the torch.distributions package are not hooked 

as well presenting yet another major challenge to DP integration into FL workflows as almost all DP 

algorithms require the drawing of noise variables from Laplace or Gaussian distributions. To that end, we 

present how we mitigated some of these issues to integrate a custom DP algorithm in our implementation 

which can be seen in Section 3.6. 

3. Methodology 

3.1. Privacy Analysis 

For the privacy analyses presented in this paper, we explicitly disregard the privacy loss due to model 

selection, feature selection, and hyper-parameter tuning. In order to satisfy differential privacy strictly, it is 

important to account for the privacy loss in all of these steps. However, as the focus of this paper is on 

mainly implementing custom deferentially private mechanisms for model training under the federated 

learning context, without loss of generality, we assume that the privacy parameters would have been split 

appropriately for each of these steps as necessary. The privacy parameters used in the analysis provided will 

then be focused entirely on the model training step. 

3.2. Dataset 

For this work, we consider the breast cancer gene expression data (BC-TCGA), which was made 

available by The Cancer Genome Atlas Program (TCGA) [22]. These data include expression profiles for 

17,814 genes across 590 samples, including 529 samples from breast cancer tissues and 61 samples from 

phenotypically normal tissues. The 590 samples in the dataset were randomly split into train and test subsets, 

with a ratio of 80:20.  

 

Fig. 2: Comparison between classification performance of Linear Transformation and logistic Regression 

3.3. Model Selection 

Since the dataset only has a small number of samples and we focus on the integration with differentially 

private algorithms, we only compared simple models such as a single linear transformation layer and a 

logistic regression. As can be seen from Figure 2, comparing the accuracy, precision, and recall values over 

1000 trials, the logistic regression model has consistently better accuracy and precision values compared to 

the linear model. Even though the logistic regression has slightly lower recall values compared to the linear 

model, it is to be noted that it is still considerably high at above 0.95. Therefore logistic regression was fixed 

as the machine learning model considered in the remaining of the experiments. 

3.4. Feature Selection 

A key feature of genome-wide expression datasets is their high dimensionality, with the number of 

features (genes) often being many times greater than the number of samples [23]. This is exemplified by the 
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tumor expression data used in the present study, which includes expression levels for 17,814 genes from only 

590 samples. Given that this gene set represents a significant majority of all human coding genes, we would 

expect most to play no role in tumorigenesis and would therefore be irrelevant to a tumor classification task. 

As such, we would expect that failure to remove a significant proportion of these uninformative features 

would pose issues for model convergence, controlling training time, and improving the accuracy of the 

resultant classification model. On this basis, we opted to use a feature selection (FS) approach to ameliorate 

the issues posed by the high dimensionality of these data. 

Table 1: The top 9 genes, as selected by each feature selection algorithm 

 

A wide range of FS algorithms have been employed for use with gene expression datasets [24]. We 

chose to compare the Correlation-based Feature Selection (CFS) [25], Fast Correlation-Based Filter (FCBF) 

[26]and Minimum Redundancy Maximum Relevance (MRMR) [27] algorithms on both execution time and 

downstream classification model performance (Table 2). These algorithms in particular were chosen as they 

have previously been shown to be effective in selecting gene subsets for cancer classification from 

microarray expression data [28-30]. We used implementations of CFS and FCBF from the scikit-feature 

python package [31] and an improved implementation of the MRMR algorithm (fast-MRMR) [32]. 

The expression profiles for each gene were discretized into 5 quantiles for use with FCBF, as this 

algorithm uses an entropy-based heuristic to select relevant features which require nominal feature variables. 

The other two algorithms were applied to the data in its raw form. To account for significant differences in 

the number of features selected by each algorithm and allow for fair comparisons to be made between them, 

classification performance was assessed using only the 9 highest-ranked features, as selected by each 

algorithm (Table 1). A logistic regression model was trained on samples from the training subset, using 9 

features selected by each algorithm. The three FS algorithms were compared on the accuracy, precision, and 

recall of the resulting model's predictions on the samples from the test subset (Table 2). 

Table 2: Execution time for three feature selection algorithms, as well as the classification performance of  a 

logistic regression model trained on the features selected by each algorithm 

 

The results of this preliminary analysis, in which model training was neither federated nor differentially 

private, clearly indicate FCBF as the best performing FS algorithm of the three tested - the downstream 

model achieved perfect classification performance on the test set and the runtime of FCBF was significantly 

shorter than that of CFS. The fast-MRMR algorithm was, by far, the fastest to run. However, the logistic 

regression model trained on the features it selected achieved the lowest classification performance overall. 

Despite its impressive performance during these preliminary experiments, validation of the features 

selected using FCBF using a logistic regression which incorporated federated, differentially-private training 

resulted in the model failing to converge. Training the same model on features selected by CFS and fast-

MRMR did not reproduce this behavior, suggesting that FCBF is not suited for use with decentralized 

classification tasks. During federated training, the two models do not exchange parameters every epoch, so 

as to limit both the communication cost and the noise added by the output perturbation algorithm (See 

Section 3.5 for further details.). Training the two models separately over multiple epochs in this way may 

have resulted in the model's failure to converge, although the reason this behavior was specific to FCBF 
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remains unclear. Zhang et al. have previously reported issues with FCBF suffering from instability due to its 

use of naive heuristics that are not useful in many situation [33], which may play a role. Yet, further work is 

required to investigate this apparent issue with FCBF.  

After discounting FCBF due to the aforementioned issues with model convergence, CFS was chosen for 

use in the suggested solution on the basis of its superior downstream classification performance when 

compared to fast-MRMR. Notably, the execution time for CFS was significantly longer than the other two 

algorithms - this may pose issues for some use-cases, but for our work classification performance was 

prioritized.  

3.5. Federated Learning and Differential Privacy 

For the federated learning setup, we opted for a simple setup consisting of 2 parties, each holding an 

equal random sample of the total training data. In order to implement the output perturbation algorithm in the 

federated learning context, we first had to modify the core algorithm to allow for 2 parties to simultaneously 

learn a model together. 

As explained in Section 2.2, the output perturbation algorithm given in Algorithm 1 requires further 

modifications to be made as the privacy guarantees of the algorithm depend on the exact minimum of the 

loss function to be found. To mitigate this problem, we introduce a gradient norm bound parameter   which 

serves as a stopping condition for the algorithm - an idea that was adapted from [17]. Additionally, the noise 

distribution was also swapped out from the Laplace distribution to the Gaussian distribution which results in 

the Approximate output perturbation (AOP) algorithm presented in Algorithm 2 to be a      -differentially 

private algorithm instead of a       one. 

          

In the federated learning context for AOP, the training is split into epochs that span across both parties. 

In each epoch, each party independently trains a model without adding any differential privacy noise based 

on the dataset available to them. At the end of the epoch, the parameters of the model held by both parties 

are privatized and combined, then the next set of iterations are run. The algorithm for federated output 

perturbation is given in Algorithm 3. 

Each epoch is        -differentially private following the proof of privacy given in [17]. Therefore by 

invoking the basic composition theorem (Theorem 2), the federated model training algorithm given in 

Algorithm 3 that composes          -differentially private mechanisms where    
 

 
 and    

 

 
 is      -

differentially private. Although the advanced composition theorem could have been invoked as well, we only 

look at a low number of epochs ( ) for which the basic composition theorem gives better results. 

3.6. PySyft Plan Implementation 
In practice, the algorithms presented in the previous section are implemented in PySyft, with the 

                 function built as a PySyft plan which converts the privatization function into a low 

communication cost tensor operation that can be called by both parties. Ideally, the entire Approximate 

output perturbation algorithm should be implemented as a plan and sent to the 2 parties. However as 

explained in Section 2.3, since if and while operations cannot be encoded into a plan and the if operation is 

essential to act as the stopping condition for the algorithm, the algorithm cannot be encoded into a plan in its 

entirety. 

91



  

 

 

Instead, we encoded each iteration of the optimization step (line 5 of Algorithm 2) and the 

privatize_output function as a plan - a task that presented its own set of challenges. For the iterative step, we 

found that PySyft’s autograd feature does not work with plans well. Therefore, the gradient function had to 

be manually coded instead of relying on the loss.backward() function to automatically generate the gradients. 

Luckily, since we used a simple logistic regression model, the gradient of the parameters has a simple 

analytical expression that was coded directly. 

For the privatize_output function, the main issue arose from the fact that the Laplace and Gaussian 

distributions available through the torch.distributions package were not hooked. This meant that the 

operation that draws samples from these distributions cannot be encoded into a plan. Luckily, the 

torch.rand_like function that generates uniformly distributed tensors was hooked and could be used. One 

method for generating random numbers from the normal distribution would be to use the Box-Muller 

transform [34]. If we had wanted to make the AOP a      -differentially private algorithm, the Box Muller 

transform would have had to be modified in order to draw the noise variable from the Laplace distribution 

based on variables drawn from the uniform distribution. However, the torch.FloatTensor.normal_ function 

which directly generates a normal distributed tensor was also available and could be used to encode the 

privatize_output function into a plan which was what had to be done. 

3.7. Hyperparameter Tuning 

For the Federated output perturbation algorithm, there are a few hyperparameters to be tuned such as the 

gradient norm bound  , learning rate  , number of epochs   and regularization parameter  . As explained 

previously in Section 3.1, we will be disregarding the privacy analysis for this section as we are mainly 

focusing on the core training algorithm. Therefore, a grid search is performed to identify the best 

hyperparameters for the classification task. 

4. Results 
Following [35],   is consistently set to be 

 

  
        and the   is varied from     

 to    showing 

various levels of privacy. The accuracies are averaged across 1000 trials so that the accuracies are robust. 

The resulting change in accuracy to various levels of   can be seen in Figure 3. Unsurprisingly, for the 

differentially private learning, the best number of epochs,   was 1 as any increase in the number of epochs 

resulted in each epoch being significantly less accurate. We see that the federated output perturbation 

algorithm, even in the non-private setting where no noise is added does slightly better (96.6%) than the 

simple sklearn training algorithm used previously to validate the model and feature selection (96.0%). Under 

the private setting, the algorithm performs well under reasonably set privacy parameter of     with an 

accuracy of 92.1% - an accuracy drop of 4.5%. Compared to prior work done by Beguier et. al. [5], which 

used the DP-SGD algorithm provided by the Opacus library, this is a smaller accuracy drop from the non-

private version. Whilst their non-private accuracy is higher than ours at 99.5%, for slightly relaxed privacy 

parameters (   ,         ), their accuracy drops by 6% to 93.5% whereas our accuracy drop is only 

4.5%. This suggests that our custom DP implementation is considered more privacy-preserving than the off-

the-shelf implementations provided in DP libraries. 
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Fig. 3: Prediction accuracy vs privacy parameter   

In terms of communication cost, by trapping the messaging API provided by PySyft which is used by the 

parties to communicate with each other, we tracked the number of messages exchanged between the parties. 

We found that the implementation of plans does in fact heavily reduce the number of messages exchanged as 

can be seen from the 30.0% reduction in Figure 4a. Furthermore, the total size of the messages exchanged 

between the parties also significantly went down by 35.4% when plans were implemented as can be seen 

from Figure 4b. These results reaffirm the fact that plans are indeed useful primitives in the federated 

learning context. 

 

Fig. 4: Communication cost comparison between PySyft plan implementation and naive PySyft implementation 

5. Conclusion 
In this paper, we have looked at the challenges surrounding the incorporation of custom differentially 

private algorithms into federated learning workflows. Mainly focusing on the PySyft library, we show how 

key primitives such as plans can be leveraged to heavily reduce the communication cost in terms of the 

number and size of messages exchanged between parties participating in federated learning. However, at the 

same time, we show that the PySyft library, as it stands currently, imposes a multitude of restrictions that 

make it hard for custom DP algorithms to be incorporated into it. Nevertheless, we detail how some of these 

challenges can be overcome and ultimately present a method to integrate the output perturbation algorithm 

into a PySyft workflow. When averaged over 1000 trials, we achieve a reasonably good accuracy of 92.1% 

for privacy parameters     ,   
 

  
         compared to the non-private accuracy of 96.6%. Furthermore, 

by incorporating plans, we show that the communication cost in terms of the total number of messages and 

total message size reduces significantly by up to 35% while simultaneously showing the challenges of doing 

so. 

6. Future Work 
Our work exposes much of the challenges imposed by the PySyft library that disincentivizes the 

mainstream adoption of custom differentially private algorithms into federated learning workflows. Possible 

areas of exploration would be to propose fixes to these challenges in the PySyft library such that more 

advanced DP algorithms and models can be integrated within the library. We believe that such integration is 

necessary and will greatly benefit more research conducted in the field of privacy-preserving analytics. 

 

93



  

 

7. Acknowledgements 
This research is supported by the Institute for Infocomm Research, A*STAR Research Entities under its 

RIE2020 Advanced Manufacturing and Engineering (AME) Programmatic Programme  (Award 

A19E3b0099). Dominic’s work is supported by the Agency for Science, Technology and Research. 

8. References 

 [1] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar, M. Gaasenbeek, M. Angelo, M. 

Reich, G. S. Pinkus, et al., “Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and 

supervised machine learning,” Nature medicine, vol. 8, no. 1, pp. 68–74, 2002. 

 [2] A. C. Tan and D. Gilbert, “Ensemble machine learning on gene expression data for cancer classification,” 2003. 

 [3] X. Jin, A. Xu, R. Bie, and P. Guo, “Machine learning techniques and chi-square feature selection for cancer 

classification using sage gene expression profiles,” in International Workshop on Data Mining for Biomedical 

Applications, pp. 106–115, Springer, 2006. 

 [4] E. Glaab, J. Bacardit, J. M. Garibaldi, and N. Krasnogor, “Using rule-based machine learning for candidate disease 

gene prioritization and sample classification of cancer gene expression data,” PloS one, vol. 7, no. 7, p. e39932, 

2012. 

 [5] H. Salem, G. Attiya, and N. El-Fishawy, “Classification of human cancer diseases by gene expression profiles,” 

Applied Soft Computing , vol. 50, pp. 124–134, 2017. 

 [6] M. Maniruzzaman, M. J. Rahman, B. Ahammed, M. M. Abedin, H. S. Suri, M. Biswas, A. El-Baz, P. Bangeas, G. 

Tsoulfas, and J. S. Suri, “Statistical characterization and classification of colon microarray gene expression data 

using multiple machine learning paradigms,” Computer methods and programs in biomedicine, vol. 176, pp. 173–

193, 2019. 

 [7] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep 

networks from decentralized data,” in Artificial Intelligence and Statistics, pp. 1273–1282, PMLR, 2017. 

 [8] PySyftTeam, “Syft: A library for computing on data you do not own and cannot see.” 

 [9] L. Song, R. Shokri, and P. Mittal, “Membership inference attacks against adversarially robust deep learning 

models,” in 2019 IEEE Security and Privacy Workshops (SPW), pp. 50–56, IEEE, 2019. 

 [10] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential privacy.,” Foundations and Trends in 

Theoretical Computer Science, vol. 9, no. 3-4, pp. 211– 407, 2014. 

 [11] S. Meftah, B. H. M. Tan, C. F. Mun, K. M. M. Aung, B. Veeravalli, and V. Chandrasekhar, “Doren: Toward 

efficient deep convolutional neural networks with fully homomorphic encryption,” IEEE Transactions on 

Information Forensics and Security, vol. 16, pp. 3740–3752, 2021. 

 [12] J. Wang, C. Jin, S. Meftah, and K. M. M. Aung, “Popcorn: Paillier meets compression for efficient oblivious neural 

network inference,” 2021. 

 [13] K. Wei, J. Li, M. Ding, C. Ma, H. Su, B. Zhang, and H. V. Poor, “User-level privacy-preserving federated learning: 

Analysis and performance optimization,” IEEE Transactions on Mobile Computing, 2021. 

 [14] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V. Poor, “Federated learning 

with differential privacy: Algorithms and performance analysis,” IEEE Transactions on Information Forensics and 

Security, vol. 15, pp. 3454–3469, 2020. 

 [15] OpacusTeam, “Opacus.” 

 [16] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private empirical risk minimization.,” Journal of 

Machine Learning Research, vol. 12, no. 3, 2011. 

 [17] R. Iyengar, J. P. Near, D. Song, O. Thakkar, A. Thakurta, and L. Wang, “Towards practical differentially private 

convex optimization,” in 2019 IEEE Symposium on Security and Privacy (SP) , pp. 299–316, IEEE, 2019. 

 [18] C. Beguier, J. O. d. Terrail, I. Meah, M. Andreux, and E. W. Tramel, “Differentially private federated learning for 

cancer prediction,” arXiv preprint arXiv:2101.02997, 2021. 

94



  

 

 [19] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with 

differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications 

security, pp. 308–318, 2016. 

 [20] T. Ryffel, “Pysyft + opacus: Federated learning with differential privacy.” 

 [21] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečn`y, S. Mazzocchi, 

H. B. McMahan, et al., “Towards federated learning at scale: System design,” arXiv preprint arXiv:1902.01046, 

2019. 

 [22] C. G. A. Network et al., “Comprehensive molecular portraits of human breast tumours,” Nature, vol. 490, no. 7418, 

p. 61, 2012. 

 [23] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran, X. 

Yu, et al., “Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling,” Nature, vol. 

403, no. 6769, pp. 503–511, 2000. Differentially private, Federated Learning for Tumour Classification. 

 [24] Z. M. Hira and D. F. Gillies, “A review of feature selection and feature extraction methods applied on microarray 

data,” Advances in bioinformatics, vol. 2015, 2015. 

 [25] M. A. Hall, “Correlation-based feature selection for machine learning,” 1999. 

 [26] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast correlation-based filter solution,” in 

Proceedings of the 20th international conference on machine learning (ICML-03), pp. 856–863, 2003. 

 [27] C. Ding and H. Peng, “Minimum redundancy feature selection from microarray gene expression data,” Journal of 

bioinformatics and computational biology, vol. 3, no. 02, pp. 185–205, 2005. 

 [28] M. S. Al-Batah, B. M. Zaqaibeh, S. A. Alomari, and M. S. Alzboon, “Gene microarray cancer classification using 

correlation based feature selection algorithm and rules classifiers,” International Journal of Online and Biomedical 

Engineering (iJOE), vol. 15, no. 08, pp. 62–73, 2019. 

 [29] K. Kavitha, A. Gopinath, and M. Gopi, “Applying improved svm classifier for leukemia cancer classification using 

fcbf,” in 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 

pp. 61–66, IEEE, 2017. 

 [30] M. Akhand, M. A. Miah, M. H. Kabir, and M. H. Rahman, “Cancer classification from dna microarray data using 

mrmr and artificial neural network,” Cancer, vol. 10, no. 7, 2019. 

 [31] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, “Feature selection: A data perspective,” 

ACM Computing Surveys (CSUR), vol. 50, no. 6, p. 94, 2018. 

 [32] S. Ramírez-Gallego, I. Lastra, D. Martínez-Rego, V. Bolón-Canedo, J. M. Benítez, F. Herrera, and A. Alonso-

Betanzos, “Fast-mrmr: Fast minimum redundancy maximum relevance algorithm for high-dimensional big data,” 

International Journal of Intelligent Systems, vol. 32, no. 2, pp. 134–152, 2017. 

 [33] Y. Zhang and Z. Zhang, “Feature subset selection with cumulate conditional mutual information minimization,” 

Expert systems with applications, vol. 39, no. 5, pp. 6078–6088, 2012. 

 [34] G. E. P. Box and M. E. Muller, “A Note on the Generation of Random Normal Deviates,” The Annals of 

Mathematical Statistics, vol. 29, no. 2, pp. 610 – 611, 1958. 

 [35] X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. Naughton, “Bolt-on differential privacy for scalable 

stochastic gradient descent-based analytics,” in Proceedings of the 2017 ACM International Conference on 

Management of Data, pp. 1307–1322, 2017. 

95


