

Differentially Private, Federated Learning on Gene Expression Data

for Tumour Classification

Souhail Meftah
1,3

+
, Meenatchi S. M. S. Annamalai

1
, Dominic J. F. Byrne

1,2
, Khin Mi Mi Aung

1

and Bharadwaj Veeravalli
3

1 Institute for Infocomm Research, A*STAR, Singapore
2 The University of Manchester, Manchester, UK

3 The National University of Singapore, Singapore

Abstract. Over recent years, machine learning (ML) methods have enabled considerable progress to be

made within a variety of data-rich research domains. Genomics is one prominent field, with ML-based

approaches achieving exciting results in a range of historically difficult tasks. One such area where ML

approaches have achieved particular success is the classification of cancerous tissues using gene expression

data. Despite this success, recent advances share a common issue with many other areas of ML research -

state-of-the-art performance relies upon the aggregation of large training datasets. Many have raised concerns

over the implications such large-scale data aggregation practice has for data privacy, and the nature of

genomic data makes such concerns all the more pertinent within a cancer classification setting. Because of

the sensitivity of such data, strict policies are enacted to protect patient privacy. Whilst currently unavoidable,

such policies are a key roadblock to advances in ML research in this domain. Federated learning (FL) aims to

solve this issue by allowing ML models to be trained on decentralized data. Despite the promise held by this

approach, recent work has demonstrated that FL is not sufficient for fully private training of ML models. The

incorporation of differential privacy (DP) into an FL framework has previously been shown to enable

decentralized model training in a privacy-preserving manner. We introduce a method to incorporate custom

differentially private algorithms directly into federated learning workflows that are not currently

implemented by privacy libraries such as Opacus.

Keywords: differential-privacy, federated learning, gene expression

1. Introduction

1.1. Context

A surge in data availability across healthcare disciplines in recent years makes this domain an immensely

exciting one for machine learning (ML) research, perhaps none more so than genomics. Rapid improvements

in sequencing technologies have brought about a flood of large novel datasets, whose complexity often

hampers progress by more traditional approaches. It is unsurprising then, that we have seen numerous

successful applications of various ML approaches to classification tasks using gene expression datasets [1-6],

such as the one used in the present study.

Despite holding much promise, advances in this research domain typically require the aggregation of

large amounts of genomic data, giving rise to significant privacy concerns. Additionally, hospitals often have

strict privacy policies that prevent them from sharing their patient data even in encrypted form. These

concerns form a significant roadblock to the adoption of ML in healthcare research despite the huge potential.

Federated learning (FL) [7] was introduced to solve the privacy problem by allowing a global ML model

to be learned from decentralized local data without the data ever leaving the device. To that end, many

implementations of FL have been presented, PySyft [8] being one of the main libraries used in research

settings. While this was a promising approach to protect privacy, the recent swathe of membership inference

attacks [9] have shown that it is still possible for fully trained models to leak sensitive information about

+ Corresponding author. Tel: +65 9354 1627

 E-mail address: stusm@i2r.a-star.edu.sg; souhailmeftah@gmail.com.

86

ISBN: 978-981-18-3959-7

2022 the 12th International Workshop on Computer Science and Engineering (WCSE 2022)

doi: 10.18178/wcse.2022.06.014

individuals in the training dataset, therefore, questioning the adequacy of pure FL approaches in ensuring

privacy. Still, FL is particularly useful in the medical context as it provides a way for hospitals to engage in

collaborative learning without sharing their patient data directly.

Differential Privacy[10], on the other hand, is a mathematical formalism that solves the privacy problem

by providing strong guarantees bounding the information leakage due to the participation of a single user in a

dataset. Differentially private (DP) mechanisms, therefore, enable ML to be conducted on sensitive datasets

such as the present gene expression dataset without breaching the privacy of any single user. As such, DP

provides an enhancement on top of the utility of FL by further providing strong mathematical guarantees that

directly protect the privacy of the patient data during the learning process. Hence, federated learning put

together with differential privacy can be a more efficient solution to enable secure ML in healthcare research

compared to traditional approaches such as Fully Homomorphic Encryption which can be orders of

magnitude slower [11] [12].

1.2. Problem Statement

Whilst integrating between FL and DP is not an entirely new concept, current implementations suffer

from significant disadvantages. Firstly, some of these implementations are bespoke [13][14] and have not

been well-integrated and optimized for workflows involving open-source federated learning libraries such as

PySyft. This, therefore, hinders the usage of such frameworks in research as the implementation code may

not be published or be general enough for usage in various settings. Secondly, the implementations that do

integrate with federated learning libraries such as Opacus [15], exclusively implement the DP-SGD

algorithm hindering the usage of the framework with custom DP algorithms such as output perturbation [16]

and approximate minima perturbation [17] which may prove to be more suitable in certain settings.

Therefore, one of the biggest impediments to more FL-DP integration is the lack of a clear framework that is

flexible enough to accommodate custom DP algorithms but also integrates well with and is well optimized

for existing FL libraries.

1.3. Contributions

In this work, we present how custom DP algorithms can be implemented, specifically in the PySyft

library. Furthermore, we optimize the implementation to make use of primitives in PySyft, namely the Plan

architecture, and show how the optimization indeed brings down the communication cost significantly.

Finally, we use this method to successfully train a binary cancer classifier in a decentralized, privacy-

preserving way. We show that our custom DP implementation results in a smaller accuracy drop from the

non-private version compared to prior work done using the Opacus-PySyft integration [18] proving the

utility of such a custom framework. Furthermore, as the custom DP algorithm we used can be swapped out

for any other algorithm seamlessly, the framework is flexible and well optimized for the PySyft library;

which we hope will prove useful to researchers for the development and testing of their custom DP

algorithms in the FL context. To that end, we provide our full implementation at:

(https://drive.google.com/file/d/17tH8zTjDrswFPGyL7HQA_XiEc9ljyWZc/view?usp=sharing)

2. Preliminaries

2.1. Differential Privacy

Differential Privacy [10] provides strong mathematical guarantees protecting the users’ privacy. These

guarantees are provided directly in Definition 1. Under this definition, is the privacy parameter and is

the failure probability.

Definition 1 (Differential Privacy [10]). A randomized algorithm with domain
 is -

differentially private if for all Range() and for all such that :

Pr[𝑥 𝑆] 𝑒𝜀Pr[𝑦 𝑆] + 𝛿

Differential privacy is a popular formalism due to the theorems that support it such as the Postprocessing

theorem (Theorem 1) and Composition theorem (Theorem 2) which allow the results of differentially private

mechanisms to be further used and combined without completely breaking the privacy guarantees.

87

https://drive.google.com/file/d/17tH8zTjDrswFPGyL7HQA_XiEc9ljyWZc/view?usp=sharing

Theorem 1 (Postprocessing Theorem [10]). Let be a randomized algorithm that is

 -differentially private. Let be an arbitrary randomized mapping. Then
 is -differentially private.

Theorem 2 (Basic Composition Theorem [10]). Let
 and

 be

randomized algorithms that are - and -differentially private respectively. Then their

combination defined to be
 by the mapping is

 -differentially private.

2.2. Output Perturbation (OP)

Output perturbation [16] was introduced as an extension from the sensitivity method [10] to the class of

empirical risk minimization (ERM) classification problems. Although later methods such as the objective

perturbation method used in the DP-SGD algorithm [19] have been shown to be theoretically and empirically

superior, the DP-SGD algorithm has already been widely implemented in the Opacus library which provides

easy integration with the PySyft library [20]. Since in this paper, we are looking at how custom DP

algorithms can be integrated into a PySyft workflow, this algorithm was chosen for its simplicity and

computational efficiency. The output perturbation algorithm which is given in Algorithm 1 is proven to be

 -differentially private. However, one of the caveats of using output perturbation in real-world

algorithms is that the privacy guarantees depend on the exact minima of the function to be found. This is not

a realistic assumption as in real-world algorithms, minima are often approximated over large numbers of

iterations and computers generally operate under finite precision arithmetic. In order to use output

perturbation correctly, modifications are necessary as can be seen in Section 3.5.

Federated learning, as mentioned previously, enables a global model to be learned from decentralized

local data. While there are many system architectures that enable FL, a key primitive in FL architectures is

the plan. First introduced in [21], plans significantly reduce the bandwidth usage of FL workflows. This is

important as high bandwidth protocols lead to increased communication cost and power consumption which

are significant costs in decentralized setups which usually consist of mobile devices instead of powerful

servers. Plans mitigate the bandwidth usage of FL protocols by compressing potentially messages for

operations on remote inputs to a single message that represents all operations - the inputs of which are

referenced through pointers. They do so by serializing a sequence of tensor operations into a single message

that can be sent to and executed by all parties.

Fig. 1: System architecture for PySyft Pla

88

Specifically, in PySyft, the @sy.func2plan decorator attempts to transform a given python function

containing torch operations into a plan. As illustrated in Figure 1, before sending the plan to a remote worker

for execution, it has to be first built or executed on dummy input for the tensor operations to be tracked and

recorded into the message. The built plan can then be sent to each party in a single message who can then

execute the plan on their local data and return the result of the plan for aggregation, thus resulting in overall

low bandwidth usage.

One of the main issues with the way plans are implemented currently is that since tensor operations need

to be traced, only operations that are ’hook’ed by the Pytorch library can be used. This means that operations

such as if and while cannot be converted into plans resulting in a major deficiency in the way plans can be

used. Furthermore, the probability distributions presented in the torch.distributions package are not hooked

as well presenting yet another major challenge to DP integration into FL workflows as almost all DP

algorithms require the drawing of noise variables from Laplace or Gaussian distributions. To that end, we

present how we mitigated some of these issues to integrate a custom DP algorithm in our implementation

which can be seen in Section 3.6.

3. Methodology

3.1. Privacy Analysis

For the privacy analyses presented in this paper, we explicitly disregard the privacy loss due to model

selection, feature selection, and hyper-parameter tuning. In order to satisfy differential privacy strictly, it is

important to account for the privacy loss in all of these steps. However, as the focus of this paper is on

mainly implementing custom deferentially private mechanisms for model training under the federated

learning context, without loss of generality, we assume that the privacy parameters would have been split

appropriately for each of these steps as necessary. The privacy parameters used in the analysis provided will

then be focused entirely on the model training step.

3.2. Dataset

For this work, we consider the breast cancer gene expression data (BC-TCGA), which was made

available by The Cancer Genome Atlas Program (TCGA) [22]. These data include expression profiles for

17,814 genes across 590 samples, including 529 samples from breast cancer tissues and 61 samples from

phenotypically normal tissues. The 590 samples in the dataset were randomly split into train and test subsets,

with a ratio of 80:20.

Fig. 2: Comparison between classification performance of Linear Transformation and logistic Regression

3.3. Model Selection

Since the dataset only has a small number of samples and we focus on the integration with differentially

private algorithms, we only compared simple models such as a single linear transformation layer and a

logistic regression. As can be seen from Figure 2, comparing the accuracy, precision, and recall values over

1000 trials, the logistic regression model has consistently better accuracy and precision values compared to

the linear model. Even though the logistic regression has slightly lower recall values compared to the linear

model, it is to be noted that it is still considerably high at above 0.95. Therefore logistic regression was fixed

as the machine learning model considered in the remaining of the experiments.

3.4. Feature Selection

A key feature of genome-wide expression datasets is their high dimensionality, with the number of

features (genes) often being many times greater than the number of samples [23]. This is exemplified by the

89

tumor expression data used in the present study, which includes expression levels for 17,814 genes from only

590 samples. Given that this gene set represents a significant majority of all human coding genes, we would

expect most to play no role in tumorigenesis and would therefore be irrelevant to a tumor classification task.

As such, we would expect that failure to remove a significant proportion of these uninformative features

would pose issues for model convergence, controlling training time, and improving the accuracy of the

resultant classification model. On this basis, we opted to use a feature selection (FS) approach to ameliorate

the issues posed by the high dimensionality of these data.

Table 1: The top 9 genes, as selected by each feature selection algorithm

A wide range of FS algorithms have been employed for use with gene expression datasets [24]. We

chose to compare the Correlation-based Feature Selection (CFS) [25], Fast Correlation-Based Filter (FCBF)

[26]and Minimum Redundancy Maximum Relevance (MRMR) [27] algorithms on both execution time and

downstream classification model performance (Table 2). These algorithms in particular were chosen as they

have previously been shown to be effective in selecting gene subsets for cancer classification from

microarray expression data [28-30]. We used implementations of CFS and FCBF from the scikit-feature

python package [31] and an improved implementation of the MRMR algorithm (fast-MRMR) [32].

The expression profiles for each gene were discretized into 5 quantiles for use with FCBF, as this

algorithm uses an entropy-based heuristic to select relevant features which require nominal feature variables.

The other two algorithms were applied to the data in its raw form. To account for significant differences in

the number of features selected by each algorithm and allow for fair comparisons to be made between them,

classification performance was assessed using only the 9 highest-ranked features, as selected by each

algorithm (Table 1). A logistic regression model was trained on samples from the training subset, using 9

features selected by each algorithm. The three FS algorithms were compared on the accuracy, precision, and

recall of the resulting model's predictions on the samples from the test subset (Table 2).

Table 2: Execution time for three feature selection algorithms, as well as the classification performance of a

logistic regression model trained on the features selected by each algorithm

The results of this preliminary analysis, in which model training was neither federated nor differentially

private, clearly indicate FCBF as the best performing FS algorithm of the three tested - the downstream

model achieved perfect classification performance on the test set and the runtime of FCBF was significantly

shorter than that of CFS. The fast-MRMR algorithm was, by far, the fastest to run. However, the logistic

regression model trained on the features it selected achieved the lowest classification performance overall.

Despite its impressive performance during these preliminary experiments, validation of the features

selected using FCBF using a logistic regression which incorporated federated, differentially-private training

resulted in the model failing to converge. Training the same model on features selected by CFS and fast-

MRMR did not reproduce this behavior, suggesting that FCBF is not suited for use with decentralized

classification tasks. During federated training, the two models do not exchange parameters every epoch, so

as to limit both the communication cost and the noise added by the output perturbation algorithm (See

Section 3.5 for further details.). Training the two models separately over multiple epochs in this way may

have resulted in the model's failure to converge, although the reason this behavior was specific to FCBF

90

remains unclear. Zhang et al. have previously reported issues with FCBF suffering from instability due to its

use of naive heuristics that are not useful in many situation [33], which may play a role. Yet, further work is

required to investigate this apparent issue with FCBF.

After discounting FCBF due to the aforementioned issues with model convergence, CFS was chosen for

use in the suggested solution on the basis of its superior downstream classification performance when

compared to fast-MRMR. Notably, the execution time for CFS was significantly longer than the other two

algorithms - this may pose issues for some use-cases, but for our work classification performance was

prioritized.

3.5. Federated Learning and Differential Privacy

For the federated learning setup, we opted for a simple setup consisting of 2 parties, each holding an

equal random sample of the total training data. In order to implement the output perturbation algorithm in the

federated learning context, we first had to modify the core algorithm to allow for 2 parties to simultaneously

learn a model together.

As explained in Section 2.2, the output perturbation algorithm given in Algorithm 1 requires further

modifications to be made as the privacy guarantees of the algorithm depend on the exact minimum of the

loss function to be found. To mitigate this problem, we introduce a gradient norm bound parameter which

serves as a stopping condition for the algorithm - an idea that was adapted from [17]. Additionally, the noise

distribution was also swapped out from the Laplace distribution to the Gaussian distribution which results in

the Approximate output perturbation (AOP) algorithm presented in Algorithm 2 to be a -differentially

private algorithm instead of a one.

In the federated learning context for AOP, the training is split into epochs that span across both parties.

In each epoch, each party independently trains a model without adding any differential privacy noise based

on the dataset available to them. At the end of the epoch, the parameters of the model held by both parties

are privatized and combined, then the next set of iterations are run. The algorithm for federated output

perturbation is given in Algorithm 3.

Each epoch is -differentially private following the proof of privacy given in [17]. Therefore by

invoking the basic composition theorem (Theorem 2), the federated model training algorithm given in

Algorithm 3 that composes -differentially private mechanisms where

 and

 is -

differentially private. Although the advanced composition theorem could have been invoked as well, we only

look at a low number of epochs () for which the basic composition theorem gives better results.

3.6. PySyft Plan Implementation
In practice, the algorithms presented in the previous section are implemented in PySyft, with the

 function built as a PySyft plan which converts the privatization function into a low

communication cost tensor operation that can be called by both parties. Ideally, the entire Approximate

output perturbation algorithm should be implemented as a plan and sent to the 2 parties. However as

explained in Section 2.3, since if and while operations cannot be encoded into a plan and the if operation is

essential to act as the stopping condition for the algorithm, the algorithm cannot be encoded into a plan in its

entirety.

91

Instead, we encoded each iteration of the optimization step (line 5 of Algorithm 2) and the

privatize_output function as a plan - a task that presented its own set of challenges. For the iterative step, we

found that PySyft’s autograd feature does not work with plans well. Therefore, the gradient function had to

be manually coded instead of relying on the loss.backward() function to automatically generate the gradients.

Luckily, since we used a simple logistic regression model, the gradient of the parameters has a simple

analytical expression that was coded directly.

For the privatize_output function, the main issue arose from the fact that the Laplace and Gaussian

distributions available through the torch.distributions package were not hooked. This meant that the

operation that draws samples from these distributions cannot be encoded into a plan. Luckily, the

torch.rand_like function that generates uniformly distributed tensors was hooked and could be used. One

method for generating random numbers from the normal distribution would be to use the Box-Muller

transform [34]. If we had wanted to make the AOP a -differentially private algorithm, the Box Muller

transform would have had to be modified in order to draw the noise variable from the Laplace distribution

based on variables drawn from the uniform distribution. However, the torch.FloatTensor.normal_ function

which directly generates a normal distributed tensor was also available and could be used to encode the

privatize_output function into a plan which was what had to be done.

3.7. Hyperparameter Tuning

For the Federated output perturbation algorithm, there are a few hyperparameters to be tuned such as the

gradient norm bound , learning rate , number of epochs and regularization parameter . As explained

previously in Section 3.1, we will be disregarding the privacy analysis for this section as we are mainly

focusing on the core training algorithm. Therefore, a grid search is performed to identify the best

hyperparameters for the classification task.

4. Results
Following [35], is consistently set to be

 and the is varied from

 to showing

various levels of privacy. The accuracies are averaged across 1000 trials so that the accuracies are robust.

The resulting change in accuracy to various levels of can be seen in Figure 3. Unsurprisingly, for the

differentially private learning, the best number of epochs, was 1 as any increase in the number of epochs

resulted in each epoch being significantly less accurate. We see that the federated output perturbation

algorithm, even in the non-private setting where no noise is added does slightly better (96.6%) than the

simple sklearn training algorithm used previously to validate the model and feature selection (96.0%). Under

the private setting, the algorithm performs well under reasonably set privacy parameter of with an

accuracy of 92.1% - an accuracy drop of 4.5%. Compared to prior work done by Beguier et. al. [5], which

used the DP-SGD algorithm provided by the Opacus library, this is a smaller accuracy drop from the non-

private version. Whilst their non-private accuracy is higher than ours at 99.5%, for slightly relaxed privacy

parameters (,), their accuracy drops by 6% to 93.5% whereas our accuracy drop is only

4.5%. This suggests that our custom DP implementation is considered more privacy-preserving than the off-

the-shelf implementations provided in DP libraries.

92

Fig. 3: Prediction accuracy vs privacy parameter

In terms of communication cost, by trapping the messaging API provided by PySyft which is used by the

parties to communicate with each other, we tracked the number of messages exchanged between the parties.

We found that the implementation of plans does in fact heavily reduce the number of messages exchanged as

can be seen from the 30.0% reduction in Figure 4a. Furthermore, the total size of the messages exchanged

between the parties also significantly went down by 35.4% when plans were implemented as can be seen

from Figure 4b. These results reaffirm the fact that plans are indeed useful primitives in the federated

learning context.

Fig. 4: Communication cost comparison between PySyft plan implementation and naive PySyft implementation

5. Conclusion
In this paper, we have looked at the challenges surrounding the incorporation of custom differentially

private algorithms into federated learning workflows. Mainly focusing on the PySyft library, we show how

key primitives such as plans can be leveraged to heavily reduce the communication cost in terms of the

number and size of messages exchanged between parties participating in federated learning. However, at the

same time, we show that the PySyft library, as it stands currently, imposes a multitude of restrictions that

make it hard for custom DP algorithms to be incorporated into it. Nevertheless, we detail how some of these

challenges can be overcome and ultimately present a method to integrate the output perturbation algorithm

into a PySyft workflow. When averaged over 1000 trials, we achieve a reasonably good accuracy of 92.1%

for privacy parameters ,

 compared to the non-private accuracy of 96.6%. Furthermore,

by incorporating plans, we show that the communication cost in terms of the total number of messages and

total message size reduces significantly by up to 35% while simultaneously showing the challenges of doing

so.

6. Future Work
Our work exposes much of the challenges imposed by the PySyft library that disincentivizes the

mainstream adoption of custom differentially private algorithms into federated learning workflows. Possible

areas of exploration would be to propose fixes to these challenges in the PySyft library such that more

advanced DP algorithms and models can be integrated within the library. We believe that such integration is

necessary and will greatly benefit more research conducted in the field of privacy-preserving analytics.

93

7. Acknowledgements
This research is supported by the Institute for Infocomm Research, A*STAR Research Entities under its

RIE2020 Advanced Manufacturing and Engineering (AME) Programmatic Programme (Award

A19E3b0099). Dominic’s work is supported by the Agency for Science, Technology and Research.

8. References

 [1] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar, M. Gaasenbeek, M. Angelo, M.

Reich, G. S. Pinkus, et al., “Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and

supervised machine learning,” Nature medicine, vol. 8, no. 1, pp. 68–74, 2002.

 [2] A. C. Tan and D. Gilbert, “Ensemble machine learning on gene expression data for cancer classification,” 2003.

 [3] X. Jin, A. Xu, R. Bie, and P. Guo, “Machine learning techniques and chi-square feature selection for cancer

classification using sage gene expression profiles,” in International Workshop on Data Mining for Biomedical

Applications, pp. 106–115, Springer, 2006.

 [4] E. Glaab, J. Bacardit, J. M. Garibaldi, and N. Krasnogor, “Using rule-based machine learning for candidate disease

gene prioritization and sample classification of cancer gene expression data,” PloS one, vol. 7, no. 7, p. e39932,

2012.

 [5] H. Salem, G. Attiya, and N. El-Fishawy, “Classification of human cancer diseases by gene expression profiles,”

Applied Soft Computing , vol. 50, pp. 124–134, 2017.

 [6] M. Maniruzzaman, M. J. Rahman, B. Ahammed, M. M. Abedin, H. S. Suri, M. Biswas, A. El-Baz, P. Bangeas, G.

Tsoulfas, and J. S. Suri, “Statistical characterization and classification of colon microarray gene expression data

using multiple machine learning paradigms,” Computer methods and programs in biomedicine, vol. 176, pp. 173–

193, 2019.

 [7] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep

networks from decentralized data,” in Artificial Intelligence and Statistics, pp. 1273–1282, PMLR, 2017.

 [8] PySyftTeam, “Syft: A library for computing on data you do not own and cannot see.”

 [9] L. Song, R. Shokri, and P. Mittal, “Membership inference attacks against adversarially robust deep learning

models,” in 2019 IEEE Security and Privacy Workshops (SPW), pp. 50–56, IEEE, 2019.

 [10] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential privacy.,” Foundations and Trends in

Theoretical Computer Science, vol. 9, no. 3-4, pp. 211– 407, 2014.

 [11] S. Meftah, B. H. M. Tan, C. F. Mun, K. M. M. Aung, B. Veeravalli, and V. Chandrasekhar, “Doren: Toward

efficient deep convolutional neural networks with fully homomorphic encryption,” IEEE Transactions on

Information Forensics and Security, vol. 16, pp. 3740–3752, 2021.

 [12] J. Wang, C. Jin, S. Meftah, and K. M. M. Aung, “Popcorn: Paillier meets compression for efficient oblivious neural

network inference,” 2021.

 [13] K. Wei, J. Li, M. Ding, C. Ma, H. Su, B. Zhang, and H. V. Poor, “User-level privacy-preserving federated learning:

Analysis and performance optimization,” IEEE Transactions on Mobile Computing, 2021.

 [14] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V. Poor, “Federated learning

with differential privacy: Algorithms and performance analysis,” IEEE Transactions on Information Forensics and

Security, vol. 15, pp. 3454–3469, 2020.

 [15] OpacusTeam, “Opacus.”

 [16] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private empirical risk minimization.,” Journal of

Machine Learning Research, vol. 12, no. 3, 2011.

 [17] R. Iyengar, J. P. Near, D. Song, O. Thakkar, A. Thakurta, and L. Wang, “Towards practical differentially private

convex optimization,” in 2019 IEEE Symposium on Security and Privacy (SP) , pp. 299–316, IEEE, 2019.

 [18] C. Beguier, J. O. d. Terrail, I. Meah, M. Andreux, and E. W. Tramel, “Differentially private federated learning for

cancer prediction,” arXiv preprint arXiv:2101.02997, 2021.

94

 [19] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with

differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications

security, pp. 308–318, 2016.

 [20] T. Ryffel, “Pysyft + opacus: Federated learning with differential privacy.”

 [21] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečn`y, S. Mazzocchi,

H. B. McMahan, et al., “Towards federated learning at scale: System design,” arXiv preprint arXiv:1902.01046,

2019.

 [22] C. G. A. Network et al., “Comprehensive molecular portraits of human breast tumours,” Nature, vol. 490, no. 7418,

p. 61, 2012.

 [23] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran, X.

Yu, et al., “Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling,” Nature, vol.

403, no. 6769, pp. 503–511, 2000. Differentially private, Federated Learning for Tumour Classification.

 [24] Z. M. Hira and D. F. Gillies, “A review of feature selection and feature extraction methods applied on microarray

data,” Advances in bioinformatics, vol. 2015, 2015.

 [25] M. A. Hall, “Correlation-based feature selection for machine learning,” 1999.

 [26] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast correlation-based filter solution,” in

Proceedings of the 20th international conference on machine learning (ICML-03), pp. 856–863, 2003.

 [27] C. Ding and H. Peng, “Minimum redundancy feature selection from microarray gene expression data,” Journal of

bioinformatics and computational biology, vol. 3, no. 02, pp. 185–205, 2005.

 [28] M. S. Al-Batah, B. M. Zaqaibeh, S. A. Alomari, and M. S. Alzboon, “Gene microarray cancer classification using

correlation based feature selection algorithm and rules classifiers,” International Journal of Online and Biomedical

Engineering (iJOE), vol. 15, no. 08, pp. 62–73, 2019.

 [29] K. Kavitha, A. Gopinath, and M. Gopi, “Applying improved svm classifier for leukemia cancer classification using

fcbf,” in 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),

pp. 61–66, IEEE, 2017.

 [30] M. Akhand, M. A. Miah, M. H. Kabir, and M. H. Rahman, “Cancer classification from dna microarray data using

mrmr and artificial neural network,” Cancer, vol. 10, no. 7, 2019.

 [31] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, “Feature selection: A data perspective,”

ACM Computing Surveys (CSUR), vol. 50, no. 6, p. 94, 2018.

 [32] S. Ramírez-Gallego, I. Lastra, D. Martínez-Rego, V. Bolón-Canedo, J. M. Benítez, F. Herrera, and A. Alonso-

Betanzos, “Fast-mrmr: Fast minimum redundancy maximum relevance algorithm for high-dimensional big data,”

International Journal of Intelligent Systems, vol. 32, no. 2, pp. 134–152, 2017.

 [33] Y. Zhang and Z. Zhang, “Feature subset selection with cumulate conditional mutual information minimization,”

Expert systems with applications, vol. 39, no. 5, pp. 6078–6088, 2012.

 [34] G. E. P. Box and M. E. Muller, “A Note on the Generation of Random Normal Deviates,” The Annals of

Mathematical Statistics, vol. 29, no. 2, pp. 610 – 611, 1958.

 [35] X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. Naughton, “Bolt-on differential privacy for scalable

stochastic gradient descent-based analytics,” in Proceedings of the 2017 ACM International Conference on

Management of Data, pp. 1307–1322, 2017.

95

